2016-2017 News

June 15, 2017

Michael Salerno, BME Graduate Student, Awarded the Chateaubriand Fellow

Congratulations to Michael Salerno, who has been named as a 2017-2018 Chateaubriand Fellow. He will be supported to study PET imaging in France for 9 months.

June 9, 2017

Andrew Kumpfbeck, a BME major (Class of 2018), named URECA Researcher of the Month

Congratulations to Andrew for being named as the URECA researcher of the month. He is currently working with Dr. Prives (Pharmacological Sciences) and Dr. Frame (BME).

more info

June 9, 2017

Eric Brouzes, BME Assistant Professor, Discusses A Recent Publication in Lab on A Chip

Recently, technologies based on droplet microfluidics have enabled the development of novel platforms to facilitate single-cell analysis, paving the way towards a better understanding of the role of tissue heterogeneity in the development of diseases such as cancer. Platforms relying on droplets microfluidics operate at very high-throughput and are unable to reliably deposit one individual cell per droplet. Both aspects hinder the development of droplet-based devices for processing samples of limited availability such as needle biopsies or isolated CTCs.
In this Lab on a Chip communication, we introduce an innovative strategy for the preparation of precious samples for single-cell analysis. Individual cells from the sample are captured using hydrodynamic traps before introducing an oil phase which sequentially surrounds the cell-occupied chambers. This results in the generation of numerous droplets, each containing a single cell. The encapsulated cells can then be retrieved from the platform for analysis using established droplet-based technologies. Our device efficiently encapsulates hundreds of individual cells into droplets while exhibiting no sample loss, effectively laying the foundations for the single-cell analysis of rare samples via droplet microfluidics.

more info | related pdf

May 4, 2017

Dr. Clinton Rubin, BME Distinguished Professor and Chair, and Director of Center for Biotechnology, Talks on Improving SBIR and STTR Programs

Dr. Clinton Rubin talks NIH-REACH program as catalyst for tech & econ dev at joint congressional hearing. Start video at 2:53 to hear Dr. Rubin's remarks.

more info

April 10, 2017

Dr. Danny Bluestein, BME Professor, Awarded a New Grant

Congratulations to Danny Bluestein who has received a Phase 1 STTR grant entitled "A novel polymeric valve for transcatheter aorta valve replacement. This is a 2 year grant for a total of $225,000.

April 10, 2017

Dr. Gabor Balazsi, BME Associate Professor, Awarded NIH Grant

Congratulations to Dr. Balazsi and his team for being awarded a 5 year NIH grant entitled "Dynamics and Evolution of Synthetic and Natural Gene Regulatory Networks."

April 4, 2017

Gabor Balazsi, BME Associate Professor, Named as a Discovery Prize Finalist

Stony Brook has earned its stellar reputation as a prestigious research institution because of its many breakthrough discoveries — such as developing the technology for the MRI — made during the past several decades. In a time of dwindling federal funding, it is crucial that we continue to support fundamental research and encourage our greatest minds to pursue the big ideas that transform lives and make an impact around the world.
With this in mind, we established the Discovery Prize in 2013 with a generous donation from the Stony Brook Foundation Board of Trustees. The Prize is awarded to an early-career Stony Brook faculty member in the STEM disciplines whose pioneering project embraces risk and innovation and embodies the potential of discovery-driven research — the catalysts for scientific advances.

more info

April 3, 2017

Dr. Qin on Capitol Hill; Advocating for NIH Research Funding

As a delegate for the American Academy of Orthopaedic Surgeons (AAOS), Dr. Qin went to Washington for a Research Capitol Hill Days. Their goal is to encourage Congress and Senate to pass NIH FY 2017 bill ($34.1B) and FY 2018 bill ($36.1B). This is a critical year. The whole team represents total of 24 orthopaedic related societies. The small group includes an orthopaedic surgeon, Dr. Gary Brock, a Victoria Secret supermodel, Martha Hunt, as a patient advocate, and Dr. Qin as a researcher. They visited both NY and TX Congress and Senate Offices, including Chuck Schumer, Lee Zeldin, John Cornyn, Kristen Gillibrand, Nita Lowey, and John Culberson. It was a very busy and productive day, but absolutely worthwhile. Their voices were heard loudly. Their impression is that to keep and/or increase NIH budget, it must be supported in bipartisan at least for these two States. Both Senators and Congressman/Congresswoman are willing to fight for NIH.

January 23, 2017

Stony Brook Ranked #7 for percent of students from the bottom fifth of the income distribution who end up in the top three-fifths

Stony Brook was recently ranked by the New York Times as one of America's Great Working-Class colleges.

more info

November 21, 2016

Federal Work Study Position Available Effective Spring 2017

If you have Federal Work Study for the Spring 2017 semester and are looking for a position still. Please send your resume to jessica.kuhn@stonybrook.edu. The position includes filling, clerical tasks, deliveries across campus, etc.

October 25, 2016

Shu Jia, BME Assistant Professor, Awarded 2 Prestigious Awards

The National Science Foundation and the Defense Advanced Research Projects Agency has funded two projects focused on the development of new super-resolution light microscope for both imaging of cells, tissues and organ systems and specifically will try to develop an understanding of the brain. Congratulations to Shu and his research team!

more info

October 12, 2016

Postdoctoral Position Available

We are seeking a motivated postdoctoral fellow to join our multi-institution team in the research of novel applications of optical spectroscopy in medicine and the device-on-chip development. Qualified candidate should have a Ph.D. degree in biomedical engineering, electrical engineering or related fields with strong interest in medical device, proven experience in optical spectroscopy and field programmable gate array (FPGA) technology in high performance computing, and electronic and optical system integration.

more info

September 27, 2016

Amna Haider, BME Junior, Featured on PSEG LI Investing in the Future of Stem

Congratulations to Amna for her research work this summer, funded by PSEG LI, to look into the role of cocaine on bone mechanical/physical properties. Amna is currently working on the direction of Drs Ete Chan and Clint Rubin. Bruce Coluccio, a BME Sophomore, and Robert Bruce, a Physics Major, also work with Drs Chan and Rubin over the summer in this project. Congratulations to all for their important work.

more info

September 20, 2016

Assistant Professor, Shu Jia, has been named as a DARPA Young Faculty Awardee

The awarded project entitled: "Wavefront-Engineered, High-Speed Super-Resolution Microscopy for Nanometer-Scale, Live-Tissue Imaging" is at the forefront of super resolution microscopy.

The advancement of our understanding of biology has been greatly reliant on observations of cells. Light microscopy, especially fluorescence microscopy, has evolved to observe smaller specimens with greater resolution. The spatial resolution of a microscope is defined as the smallest distance in an image in which two distinct points can be distinguished. Because of the diffraction of light, resolution had previously been thought to have a theoretical limit from what is called Abbe's diffraction limit of light (~200-300 nanometers). Recent emergence of super-resolution imaging techniques has surpassed this limit, allowing visualization of cellular and sub-cellular structures with ~10-20 nanomater resolution at the near-molecular-scale. This advance provides thriving opportunities for exploring the complex structure, dynamics and function of biological molecules. Due to the significant impact of these new techniques, the 2014 Nobel Prize in Chemistry was awarded to the development of super-resolution fluorescence microscopy.

The research in the Jia Laboratory aims to enhance this resolving power across unexplored regimes in space and time to attain a better understanding of the molecular basis for the functions of tissues and organisms. To achieve the goal, the group investigates the physical and engineering principles underlying single-molecule imaging in complex biological materials, and utilizes these principles to develop new biophotonic methods for super-resolution microscopy. These methods include optical physics, optical wavefront engineering, single-molecule biophysics, adaptive optics, phase microscopy, large-data processing, advanced instrumentation, nano-fabrication, etc.

One super-resolution imaging method currently under investigation is called stochastic optical reconstruction microscopy (STORM), which relies on imaging of single molecules to reconstruct fluorescence images with sub-diffraction-limit resolution. In biological systems, how these single-molecule mechanisms are integrated over larger scales is critical for understanding physiological functions and disease initiation of complex biological systems. There remains a great demand in an enabling technology to extract such single-molecule information and dynamics across large volumes of specimen with ultra-high spatiotemporal resolution.

The DARPA award will support the lab's development of a new super-resolution microscopy system for in vivo investigations of cell, tissue and organ functions. The research will base on the lab's expertise in a technique called point spread function engineering, which can modify how light is propagated within an imaging system to achieve better imaging capability. By exploring and implementing a new type of optical non-diffracting waveforms, the light within a microscope can propagate in a dramatically different way from normal light. One typical feature is that it will not spread out as much as described by the usual diffraction effect of light. This allows people to image further deeper into biological samples. In addition, it also provides better 3D resolution and is more robust to scattering effect in biological tissues.

First trained as an applied physicist and electrical engineer and later into a bioimaging expert, Dr. Jia is passionate about advancing imaging technology with new physical concepts and engineering design. The highly interdisciplinary team consists of experts from physics, computer science, engineering, and biology. In collaboration with researchers both within the Department of Biomedical Engineering and elsewhere, the lab expects their new technologies would provide new insights and solutions to challenges in biological and ultimately clinical research.

August 16, 2016

James Scheuermann wins First Place

Congratulations to BME Ph.D. Candidate, James Scheuermann who won first place in the John R. Cameron Young Investigators Competition held by the American Association of Physicists in Medicine.

more info

August 1, 2016

Ete Chan wins SUNY Funding to Develop a Virtual Lab

Ete Chan, Assistant Professor, has received funding which will explore and develop the creation of virtual labs for Biomedical Engineering students. She is the leader of a group of biomedical engineering faculty and students and computer science faculty and students that will implement this project. Congratulations.

more info

July 22, 2016

ASEE TV Highlights CEAS Research and Educational Mission

Dr. Ete Chan and BME Junior Amna Haider were featured on the ASEE Highlights of CEAS Research and Education. Congratulations.

more info