Bionanotechnology Research Overview

Bionanotechnology holds exciting opportunities to bring high-impact advances in the field of bioengineering and medicine. Exquisite biological nanostructures are a natural means by which cells interact with one another and with the extracellular matrix. Bionanotechnology offers at the nanoscale (100,000 times smaller than the diameter of the average human hair) the ability to provide insight into the structural features of biological systems such as cell or tissue as well as to develop nanobiomaterials/medical devices for diagnostics, therapeutics and tissue regeneration. Ongoing work includes development nanoprobes that can characterize the nanoscale structure and function of cells; design of multi-functional nanobiosystems for therapeutics, localized therapy delivery and for functional tissue repair/regeneration; innovative techniques for chromosome sorting; development of technologies to characterize the physio-chemical, structural and biological properties of nanostructured assemblies/materials; design of artificial biomaterials through molecular synthesis and nanoscale self-assembly.

Faculty Research Interests

extended profile
(631) 632-5414
Laufer Center - Room 115C

Balazsi, Gabor

Henry Laufer Endowed Associate Professor

gabor.balazsi@stonybrook.edu

Summary : The goal of my laboratory is to develop synthetic gene circuits (small constructs built from genes and their regulatory regions), and use them for biological discovery and practical applications (such as therapeutic gene expression control). For example, using synthetic gene circuits in yeast cells, we could demonstrate that noise (nongenetic cellular diversity) can aid microbial survival during antibiotic treatment and thereby enable the development of drug resistance. We have designed "linearizer" gene circuits in yeast cells that can tune a protein's level precisely, such that the protein concentration is proportional to an extracellular inducer and uniform within a cell population. We have moved this synthetic gene circuit into mammalian cells and can now tune the expression of a cancer-related genes precisely, to investigate how the level of tumor progression-related proteins affects invasion, migration and other metastasis-related cell behaviors. In the future, similar gene circuits may enable novel approaches to gene therapy. Our research is inherently interdisciplinary, since we use mathematical and computational models in combination with single-cell level measurements to characterize the dynamics of synthetic and natural gene networks, and to understand the cellular and multicellular behaviors they confer.

extended profile
(631) 632-1852
Bioengineering Building - Room G05

Brouzes, Eric

Assistant Professor

eric.brouzes@stonybrook.edu

Summary : Our goal is to better describe and understand the role of tissue heterogeneity in normal tissues and in the onset and development of diseases like cancer. Most tissues are comprised of a complex mixture of different cell types, and even cells within a clonal population exhibit a high degree of heterogeneity. However, the detailed behavior of individual cells is obscured in typical measurements which are averaged over cell populations. As a result, it has been difficult to comprehend the functional relevance of this heterogeneity due to the lack of adequate techniques. In order to enable the analysis of tissue heterogeneity we are developing an experimental approach based on droplet microfluidics that allows the manipulation of single cells by suspending them in drops carried in an inert fluid. These drops can then be automatically combined with reaction solutions, interrogated with fluorescent dyes or sorted to carry out sample preparation and analysis. My research exploits the advantages conferred by droplet microfluidics over conventional technologies and other microfluidics techniques in terms of automation, throughput and combinatorial power for the manipulation and analysis of single-cells.

extended profile
(631) 632-1625
Bioengineering Building - Room G19

Frame, Molly

Associate Professor & Undergraduate Program Director

mary.frame@stonybrook.edu

Summary : Our emerging understanding of oxygen delivery to the tissues is that the blood flow within the smallest arterioles is tightly organized within repeating networks across the tissue. Central to this new paradigm are the concepts of vascular communication between the beginning and end of the network (via gap junctions), and its relation to flow sensing by the vascular endothelium. Our work has shown that different types of microvascular flow patterns can be triggered by direct stimulation of the focal adhesions (alpha-v-beta-3 integrins, i.e., wound healing), compared to adenosine (i.e., metabolic change), compared to nitric oxide (i.e., inflammation), hence we can control the flow patterns. Among the goals of this work are in vitro construction of transplantable microvascular networks, using bionanotechnology to create the sturdy scaffolding, and verification of nanofabricated drug delivery units within the vasculature. To this end, equally important are mechanotransduction of the physical forces associated with flow change (i.e., wall shear stress), the pharmacologic signal transduction systems involved (which guide drug discovery and intervention), and the molecular basis for the committed step that ensures healthy flow delivery. Our work employs computational modeling of the fluid mechanics, the physiology of arteriolar network blood flow (in vivo and in vitro), and precise genomic manipulation of key proteins in healthy and vascular disease states.

extended profile
(631) 632-8483
Old Engineering - 314

Rafailovich, Miriam

Professor

miriam.rafailovich@stonybrook.edu

Summary : Surface and interface properties of polymer thin films, nanocomposite materials, phase segregation in polymer blends, polymer dynamics in confined geometries, wetting in multilayer polymer films, fracture toughness of polymer interfaces, polymer adhesion, nanopatterning using polymer self assembly, nanotribiology of polymer film surfaces, nanopatterning with magnetic impregnates in glass. Experimental specialization: SIMS, X-ray and Neutron Reflection, Lateral, magnetic and atomic force microcopy TEM, RBS, and Mossbauer Spectroscopy.

extended profile
(631) 632-1480
Bioengineering Building - Room 101

Rubenstein, David

Associate Professor & Graduate Program Director

david.rubenstein@stonybrook.edu

Summary : The goal of our lab is to 1) develop a biomimetic three-dimensional tissue engineering scaffolds that promotes microvascular blood vessel growth and 2) elucidate mechanisms that induce cardiovascular disease responses. The need for new tissue engineering scaffolds that promote microvascular growth arises due to diffusion limitations through biological tissue, which at best is approximately 100 microns. With a method to fabricate patent vascular networks ex vivo, it is possible that large scale tissue engineering applications can be realized or the healing of chronic wounds can be accelerated. Our work has identified a number of viable scaffolds that can promote vascular network growth. Additionally, more recent work has focused on identifying scaffold fabrication techniques that can form viable scaffolds for microvascular applications. Cardiovascular diseases remain the leading cause of death in the Western world. Due to this, it is salient that an understanding of disease progression is found. We aim to understand how combinations of cardiovascular disease risk factors interact to induce, accelerate, enhance or inhibit cardiovascular disease processes. Our main focus is on advanced glycation end products (diabetes), tobacco smoke and disturbed wall shear stress. We focus on platelets, endothelial cells and their interactions for all projects in our lab.

extended profile
(631) 632-1236
Chemistry

Simmerling, Carlos

Professor and Associate Director

carlos.simmerling@stonybrook.edu

Summary : The Simmerling lab at Stony Brook University carries out research in the area of computational structural biology. In particular, the lab focuses on understanding how dynamic structural changes are involved in the behavior of biomoleculs such as proteins and nucleic acids.

extended profile
(631) 632-1810
Bioengineering Building - Room 115

Sitharaman, Balaji

Associate Professor

balaji.sitharaman@stonybrook.edu

Summary : Our laboratory seeks to integrate advances in nanoscience and technology with the biological sciences and clinical medicine to achieve significant advances in simultaneous molecular diagnostics and therapeutics (theragnosis), drug delivery, and bioengineering. Towards these ends, our research interests involve a multidisciplinary approach for the development of functional (electronic, optical, magnetic, or structural) bionanosystems as contrast agents for molecular imaging, as carriers for drug delivery, and as structural scaffolds for tissue engineering. Our current projects capitalize on the unique properties of carbon nanobiomaterials to develop a) advanced contrast agents (CAs) for molecular magnetic resonance imaging (MRI), b) nanocomposites to improve the physical and biological (osteoconduction and osteoinduction) properties of polymer scaffolds for bone tissue engineering and c) non-viral vectors for gene transfection. We have exploited the potential of Gd-based carbon nanostructures: Gd@C60 metallofullerenes (gadofullerenes) and Gd@Ultrashort-tubes (gadonanotubes) as a new generation of advanced CAs for MRI and shown them to have efficacies up to 100 times greater than current clinical CAs. Our recent studies show that they are particularly well suited for passive (magnetic labels for cellular MRI) and active (pH sensitive probes for cancer detection) MRI-based Molecular Imaging. Single-walled carbon nanotubes (SWNTs) have been proposed as the ideal foundation for the next generation of materials due to their excellent mechanical properties. We have dispersed SWNTs and ultra short SWNTs into fumarate-based polymers to form nanocomposite scaffolds that exhibit mechanical properties far superior to the polymers alone and are osteoconductive as well osteoinductive. Our research work involves material synthesis techniques, physico-chemical characterization techniques, tissue culture and in vivo studies.

extended profile
(631) 632-1957
Bioengineering Building - Room G13

Strey, Helmut

Associate Professor

helmut.strey@stonybrook.edu

Summary : Nature's ability to assemble simple molecular building blocks into highly ordered materials, such as those found in cell membranes, cell nuclei, cytoskeleton, cartilage, or bone presents many fascinating and unanswered questions. We are interested in how to tune the interactions of water-soluble building blocks so as to induce their self-assembly into useful microstructures much needed for the next generation of controlled drug delivery, biosensors and DNA sequencing applications. In particular, we are working on long-range ordered polyelectrolyte-surfactant microemulsions that are used as templates for solid nanoporous materials using polymerization and/or cross-linking strategies. Such materials, because of their well-ordered porous structure, will allow more efficient molecular separation and drug delivery. In addition, we are developing biosensors that are based on biopolymer chiral liquid crystals and quantum dot colloidal crystals. In both cases the softness of the systems allows the induction of a strong optical response to external stimuli. Such sensors should be able to quantitatively detect and measure analyte concentrations at hormonal levels.

extended profile
(632) 631-7922
675 Chemistry

Takeuchi, Esther

Distinguished Professor

esther.takeuchi@stonybrook.edu

Summary : Our group conducts cutting-edge research in electrochemistry, batteries and their intersection with human health. Specifically, our interests include studying batteries for medical applications such as implantable devices. Understanding and controlling factors that limit the lifetime of batteries are of particular interest including parasitic reactions and mechanisms that lead to internal depletion. The research is multi-disciplinary involving materials, electrochemistry and the use of advanced characterization techniques.